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We calculate the Casimir interaction between a sphere and a plate, both described by the plasma model, the
Drude model, or generalizations of the two models. We compare the results at both zero and finite tempera-
tures. At asymptotically large separations we obtain analytical results for the interaction that reveal a nonuni-
versal, i.e., material-dependent interaction for the plasma model. The latter result contains the asymptotic
interaction for Drude metals and perfect reflectors as different but universal limiting cases. This observation is
related to the screening of a static magnetic field by a London superconductor. For small separations we find
corrections to the proximity force approximation that support correlations between geometry and material
properties that are not captured by the Lifshitz theory. Our results at finite temperatures reveal for Drude metals
a nonmonotonic temperature dependence of the Casimir free energy and a negative entropy over a sizeable
range of separations.
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I. INTRODUCTION

The past decade has witnessed rapid progress in the pre-
cision of Casimir force measurements.1–6 The measurement
precision that is expected in the near future demands accu-
rate theoretical calculations of the Casimir force for the ge-
ometries and materials used in experiments. While Casimir’s
original calculation for perfect metal plates7 and Lifshitz’s
formula for dielectric slabs8 only apply to planar, parallel
surfaces, recent measurements have set limits on geometry-
induced corrections in the most frequently used sphere-plate
geometry.9 The geometry dependence of Casimir forces is
intriguing as it can vary substantially with the shape and
relative orientation of the objects.10–12 Material dependence
in the form of dissipation of conduction electrons has been
experimentally confirmed to have an effect on the Casimir
force.5,13 It is thus important that the geometry and material
dependence be carefully investigated for the experimentally
most important sphere-plate configuration.

In order to compare the experimental results to theory, the
Derjaguin or proximity force approximation �PFA� �Ref. 14�
has commonly been used. This approximation neglects the
nonadditivity of Casimir forces by estimating the interaction
between curved surfaces in terms of the planar surface inter-
action between infinitesimal and parallel surface elements.
Its validity is hence limited to the singular limit of vanish-
ingly small separations between the surfaces. A systematic
extension to larger separations is not possible within such
approximations.

The first exact computation of the Casimir interaction en-
ergy for a perfectly reflecting sphere and plate was presented
in Ref. 15. Recently, corrections that come from using the
plasma or Drude model were computed at zero temperature16

and at T=300 K.17 Other open geometries with curvature
such as a cylinder above a plate have been studied for perfect
metals.18 Corrections to the PFA in the case of perfect metals
for a cylinder above a plate and a sphere above a plate have

been obtained using path-integral approaches19,20 and for
scalar fields employing a world line formalism.21

Here we show that Casimir forces reveal a rich interplay
between geometry �radius of the sphere and object’s separa-
tion�, optical properties of metals and thermal fluctuations.
We study this in detail by calculating the Casimir interaction
for different sphere radii and separations using the �i� the
Drude model, �ii� a generalized Drude model, �iii� the plasma
model, and �iv� a generalized plasma model at different tem-
peratures. The study of these combined effects is of utmost
importance since Casimir force measurements continue to be
carried out using this geometry and an increasing accuracy is
expected. Hence, the experimental findings will begin to
show sensitivity to the material and temperature effects,
which we take into account here. Furthermore, the unabated
controversy whether the plasma or the Drude model is more
appropriate for describing the optical properties of metals in
Casimir calculations compels us to provide results for both
models so that experimentalists can build on them when
studying this problem further. The plasma model is a high-
frequency description of the optical properties and the diver-
gence �1 /�2 of its dielectric function for small � is un-
physical for metals. The Drude model provides a proper low-
frequency description for metals with a 1 /� divergence of
the dielectric function for small �. At large frequencies, both
models become identical.

Below, we supply numerical results for the Casimir inter-
action at arbitrary separations as well as analytic formulas
for the asymptotic interaction at large separations. Depend-
ing on the model under consideration, the asymptotic results
show universal or nonuniversal �i.e., material-independent or
-dependent� behavior, a feature which is not present for
the simple case of two parallel metal plates and hence
results from the interplay of finite object sizes and material
properties.
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II. GENERAL EXPRESSION FOR THE INTERACTION

To calculate the interaction of a metallic sphere of radius
R and a metallic plate with a separation d between the center
of the sphere and the plate, we employ a scattering approach
for Casimir interactions, which is described in detail in Ref.
11. The Casimir free energy of this system at temperature T
is given by

E = kBT�
n=0

�

�log det�1 − Y��n�� �1�

with Matsubara wave numbers �n=2�nkBT /�c. The primed
sum indicates that the contribution for n=0 is to be weighted
by a factor of 1/2. At zero temperature the sum is replaced by
an integral along the imaginary frequency axis,11

E =
�c

2�
�

0

�

d� log det�1 − Y���� , �2�

where the matrix Y is given by the product

Ylml�m�
�	 = Ts,lm

� Ulml�m
�	 
mm� �3�

of the T operator Ts of the sphere and an operator U that
describes the propagation of waves between the plate and the
sphere and the scattering of them at the plate �see below�. We
represent these operators in a vector basis of spherical waves,
where �, 	=E, M denote electric or magnetic multipoles and
l, m label the spherical waves. For a sphere of radius R with
uniform permittivity ���� and permeability ���� the
T-matrix elements for M multipoles are given by

Ts,lm
M =

�

2

Il+1/2��R��Il+1/2�n�R� + 2n�RIl+1/2� �n�R�� − nIl+1/2�n�R��Il+1/2��R� + 2�RIl+1/2� ��R��
Kl+1/2��R��Il+1/2�n�R� + 2n�RIl+1/2� �n�R�� − nIl+1/2�n�R��Kl+1/2��R� + 2�RKl+1/2� ��R��

�4�

with n=���ic����ic��, =���ic�� /��ic��. These elements
are also known as Mie coefficients.22 The T-matrix elements
for E multipoles, Ts,lm

E , are obtained from Eq. �4� by inter-
changing � and � and by changing the overall sign. By tak-
ing ��ic��→� at an arbitrarily fixed ��ic�� in Eq. �4�, the
limit of a perfectly reflecting sphere and plate is obtained.
Then the matrix elements become independent of �,

Ts,lm
M =

�

2

Il+1/2��R�
Kl+1/2��R�

, �5a�

Ts,lm
E = −

�

2

Il+1/2��R� + 2�RIl+1/2� ��R�
Kl+1/2��R� + 2�RKl+1/2� ��R�

. �5b�

These matrix elements scale for small � as �2l+1. It is inter-
esting to compare this behavior to the scaling of the general
matrix elements of Eq. �4� for the dielectric functions of the
Drude and plasma model. For both models the Ts,lm

E ��2l+1

behavior is unchanged for E multipoles. The coefficients be-
come material �plasma frequency� dependent for the plasma
model but retain the universal values of a perfect reflector for
the Drude model. However, for M multipoles only the
plasma model shows this universal behavior while the Drude
model yields a different scaling Ts,lm

M ��2l+2 with nonuniver-
sal conductivity-dependent coefficients.

The operator U can also be expressed in a spherical wave
basis. It describes the propagation of waves from the sphere
to the plate, a reflection at the plate, and the propagation
back to the sphere. The reflection of waves at a dielectric
plane is described most easily in a plane-wave basis with
in-plane wave vector k	. The T-matrix elements of the plane
are then given by the usual Fresnel coefficients. The conver-
sion from plane to spherical waves and simultaneous trans-
lation from the sphere to the plane is obtained by multiplying

the plane’s T matrix from left and right by a matrix Dlm
�	�k	�.

After defining z=k	 /�, the matrix multiplication runs over
the continuous variable z and the elements of the operator U
can be written as

Ulml�m
�	 = �

0

� zdz

4�

e−2d��1+z2

�1 + z2 �
�

Dlm
���z�Tp

���,z�Dl�m
	��

�z� , �6�

where the plate’s diagonal T matrix, Tp
��� ,z�, for polarization

� are given by

Tp
M = −

��ic���1 + z2 − ���ic����ic�� + z2

��ic���1 + z2 + ���ic����ic�� + z2
, �7a�

Tp
E =

��ic���1 + z2 − ���ic����ic�� + z2

��ic���1 + z2 + ���ic����ic�� + z2
. �7b�

The exponential factor in Eq. �6� describes the translation
from the sphere to the plane and back by a total distance 2d
in the plane-wave basis. The elements of the matrix that
converts between plane and spherical waves are given by

Dlm
MM = Dlm

EE =�4��2l + 1��l − m�!
l�l + 1��l + m�!

zPl
m���1 + z2� , �8a�

Dlm
EM = − Dlm

ME =�4��2l + 1��l − m�!
l�l + 1��l + m�!

im

z
Pl

m��1 + z2� ,

�8b�

where Pl
m is the associated Legendre polynomial of order l,

m. These elements have the following symmetries under
complex conjugation,
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Dlm
���

= �− 1�mDlm
��, �9a�

Dlm
ME�

= �− 1�m+1Dlm
ME. �9b�

In what follows we employ Eqs. �1� and �2� to obtain the
Casimir interaction for perfectly reflecting bodies and also
for metals described by the plasma and Drude model at zero
and finite temperatures.

III. LARGE DISTANCE INTERACTION AT T=0

In this section we consider the zero-temperature Casimir
interaction at large separations for different dielectric func-
tions.

A. Perfect reflector

In the limit of perfect reflectivity of the plate, one finds
from Eq. �6� with �→� the simple T-matrix elements Tp

M

=Tp
E=1. With this simplification, the integration over z in Eq.

�6� can be performed analytically. We find for the elements
of U the same result that was obtained before, using the
method of images,15

Ulml�m
MM = Ulml�m

EE = �− 1�l+l�+1 �
l�=
l−l�


l+l� �− 1�l�

2
�l�l + 1� + l��l� + 1�

− l��l� + 1����2l + 1��2l� + 1�
l�l + 1�l��l� + 1�

�2l� + 1�

� �l� l l�

0 0 0
��l� l l�

m − m 0
�Kl�+1/2�2�d�

���d
, �10�

Ulml�m
ME = − Ulml�m

EM = �− 1�l+l�+12i�dm �
l�=
l−l�


l+l�

��− 1�l���2l + 1��2l� + 1�
l�l + 1�l��l� + 1�

�2l� + 1��l� l l�

0 0 0
�

��l� l l�

m − m 0
�Kl�+1/2�2�d�

���d
. �11�

Using this result and the T-matrix elements of Eq. �4� we
obtain for the interaction energy the large distance expansion

E = −
�c

�
 9

16

R3

d4 +
25

32

R5

d6 + O�R6/d7�� �12�

at zero temperature.15

B. Plasma model

We now assume that both the sphere and the plate are
described by the plasma model which on the imaginary fre-
quency axis has the dielectric function

�p�ic�� = 1 + � 2�

�p�
�2

�13�

and ��ic��=1. The plasma wavelength �p is related to the
plasma frequency �p by �p=2�c /�p. Note that the plasma

model provides a high-frequency description of optical prop-
erties and ignores dissipation. Hence it is not expected to
capture the low-frequency response of a metal.

To understand the physical meaning of the results for the
Casimir interaction presented below, it is interesting to real-
ize that the dielectric function of Eq. �13� appears also in the
wave equation for the magnetic field in a superconductor
when it is described by the London theory. The second Lon-
don equation and the Maxwell equations yield �p with the
penetration depth �p=�mec

2 / �16�3nse
2� for superfluid carri-

ers of density ns, charge e, and mass me.
To obtain the large distance behavior of the Casimir en-

ergy, we need to expand the T matrices for small �. To this
end, we set �=u /d and expand the relevant expressions in
powers of 1 /d, where d is compared to the relevant length
scales of the model under consideration, see below. The
T-matrix elements of the sphere scale as �2l+1 for �→0 for
both E and M polarizations. In the case of the E polarization
the coefficients are universal and are given by the perfect
reflector result which corresponds to

Ts,lm
E =

l + 1

l

1

�2l + 1�!!�2l − 1�!!
�uR/d�2l+1 + ¯ . �14�

However, for the M polarization the coefficients are not uni-
versal and depend on the plasma wavelength as follows:

Ts,lm
M =

Il+3/2�2�R/�p�
Il−1/2�2�R/�p�

1

�2l + 1�!!�2l − 1�!!
�uR/d�2l+1 + ¯ .

�15�

In the limit of a small plasma wavelength, �p�R, the ele-
ments of this matrix approach the perfect reflector limit with
is given by

Ts,lm
M =

1

�2l + 1�!!�2l − 1�!!
�uR/d�2l+1 + ¯ . �16�

For a large plasma wavelength, �p�R, the elements are not
universal and reduced by a factor �R /�p�2 compared to the
perfect reflector limit,

Ts,lm
M =

�2�R/�p�2

�2l + 1�!!�2l + 3�!!
�uR/d�2l+1 + ¯ . �17�

The latter result can be understood in terms of the London
superconductor interpretation of the plasma model. If the
penetration depth �p becomes much larger than the radius,
the sphere becomes almost transparent for the magnetic field
and the T-matrix elements are reduced to small values
�R2l+3 /�p

2.
The T-matrix elements of the plate with �p�ic�� of Eq.

�13� and ��ic��=1 depend also on the lateral wave vector k	.
To obtain the large distance expansion, we set k	 =v /d and
expand the T matrix for large d with z=k	 /�=v /u fixed. This
yields the expansion of the plate’s T-matrix elements,

Tp
M = 1 −

�z2 + 1u�p

�d
+

�z2 + 1�u2�p
2

2�2d2 + O���p/d�3� ,
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Tp
E = 1 −

u�p

�d�z2 + 1
+

u2�p
2

2�2d2�z2 + 1�
+ O���p/d�3� . �18�

With this expansion, the integral over z in Eq. �6� can be
performed analytically, and one obtains an expansion in 1 /d
of the matrix elements of U which depend on u and �p /d
only. When we substitute the matrix elements of Eqs. �14�,
�15�, and �18� into Eq. �3� and expand the energy of Eq. �1�
in powers of 1 /d, we obtain the interaction to order 1 /d6 by
including l=2 partial waves. The result can be written as

E = −
�c

�
 f4��p/R�

R3

d4 + f5��p/R�
R4

d5 + f6��p/R�
R5

d6

+ O�R6d−7�� �19�

with the functions

f4�z� =
9

16
+

9

64�2z2 −
9

32�
z coth

2�

z
, �20a�

f5�z� = −
13

20�
z −

21

80�3z3 +
21

40�2z2 coth
2�

z
, �20b�

f6�z� =
1

1792�2 coth�2�/z� − z/����2800 +
2595

�4 z4

+
10 072

�2 z2�coth�2�/z� −
z/�

sinh2�2�/z�− 2100

−
285

�4 z4 −
223

�2 z2 + �3780 +
285

�4 z4

+
3763

�2 z2�cosh�4�/z� −
1260

�
z coth�2�/z��� .

�20c�

Note the coefficient f4 of the leading term depends on �p of
the sphere only and hence is not universal. Only in the two
limits �p /R→0 and �p /R→� the coefficient approaches the
material independent values 9/16 and 3/8, respectively. This
behavior is consistent with the two limiting forms of the
sphere’s T matrix of Eqs. �16� and �17�. The limit �p /R
→0 describes perfect reflection of electric and magnetic
fields at arbitrarily low frequencies and hence agrees with the
result of Eq. �12� where for dipole fluctuations the E polar-
ization yields twice the contribution of the M polarization,
cf. Eqs. �14� and �16� for l=1. For �p /R→� the coefficient
f4 is reduced by a factor 2/3 since the M polarization does
not contribute to the leading term �R3 /d4 due its suppres-
sion by �R /�p�2, cf. Eq. �17�. Physically, the nonuniversal
behavior of f4 can be understood when the objects are con-
sidered as London superconductors. For �p /R→0 a static
magnetic field is perfectly screened and the objects become
perfect reflectors. If �p /R�1, a static magnetic field can
penetrate the entire sphere and hence the M polarization does
not contribute to the Casimir energy. From this interpretation
it follows that normal metals, which can be penetrated by a
static magnetic field, should interact to leading order in R /d

only via E polarizations leading to f4=3 /8. We shall reach
the same conclusion when we consider the Drude model be-
low. The coefficient of R4 /d5 depends on �p of both the
sphere and the plate. It is always positive and varies between
�13 /20�2���p /R� for �p /R→0 and �3 /10�2���p /R� for
�p /R→�. The coefficient of R5 /d6 can be negative �for
�p /R→0� or positive. The validity range of the expansion of
Eq. �19� is determined by d�R and d��p so that the cor-
rections to the first term are small. In Sec. V, we compare the
exact findings of Sec. V to our results from a numerical
evaluation of Eq. �2� over a wide range of separations.

Finally, it is instructive to compare the above results to the
interaction between two parallel and infinite plates that are
described by the plasma model. In this case, the large dis-
tance expansion applies to d��p and the leading term is
given by the universal perfect reflector result. The plasma
wavelength appears only in corrections to the leading term
that can be expanded in powers of �p /d. This universal be-
havior is a consequence of the �unrealistic� assumption of an
infinite lateral size of the plates which removes any finite
length scale of the object that could be compared to �p.
Hence, a finite penetration depth only yields an increased
effective separation which for d��p obviously approaches
d, explaining the universal large-d result.

C. Drude model

The Drude model describes the low-frequency response
of a metal which depends on its dc conductivity �. For large
frequencies it becomes identical to the plasma model with
plasma wavelength �p. On the imaginary frequency axis, the
Drude dielectric function is given by

�D�ic�� = 1 +
�2��2

��p��2 + �c�/�
�21�

and ��ic��=1. The conductivity is associated with the length
scale ��=2�c /�. At large distances d, we need to consider
the limit of small � at fixed z=k	 /� for the plate’s T matrix,
which yields with �=u /d,

Tp
M = 1 −� uc

�d�
�z2 + 1 +

uc

2�d�
�z2 + 1� + O��c/d��3/2� ,

�22a�

Tp
E = 1 −� uc

�d�

1
�z2 + 1

+
uc

2�d�

1

z2 + 1
+ O��c/d��3/2� .

�22b�

The approach of unity for both polarizations is a conse-
quence of keeping k	 /� fixed in the limit �→0. This behav-
ior arises from the fact that the plates are infinitely extended
so that arbitrarily small k	 are allowed. The situation is dif-
ferent at finite temperatures where one has to take �→0 at
fixed k	 for the first term of the sum over Matsubara frequen-
cies. In the latter limit the magnetic contribution Tp

M

vanishes.
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For the sphere with the Drude dielectric function of Eq.
�21� and ��ic��=1 we obtain for the T-matrix elements with
l=1 the low-frequency expansion

Ts,1m
M =

4�

45

R�

c
�uR/d�4 + ¯ , �23a�

Ts,1m
E =

2

3
�uR/d�3 −

1

2�

c

R�
�uR/d�4 + ¯ . �23b�

While the leading term of the E polarization agrees with the
perfect reflector result, the leading term of the M polarization
is reduced by a factor R�=uR /d compared to the perfect
reflector case. Therefore, one expects that only the E polar-
ization contributes to the leading term of the interaction at
large distances.

With the above expansion of the T-matrix elements the
integrations over u and z can be performed and from the
dipole contributions with l=1 we obtain for the energy the
large distance expansion

E = −
�c

�
3

8

R3

d4 −
77

384

R3

�2�/cd9/2 −
cR3

8��d5 +
�

20

�

c

R5

d5

+ O�R3��
3/2d−11/2,R5��

−1/2d−11/2�� . �24�

The leading term in Eq. �24� shows the universal amplitude
coming only from the E polarization as expected from the
form of the T-matrix elements. This result reproduces the
prediction of the plasma model in the limit where �p�R, see
the discussion below Eq. �20a�. This limit describes the situ-
ation where a static magnetic field can fully penetrate the
sphere and hence describes a normal metal. The correlations
between material and shape become obvious when one com-
pares the above result to the interaction between two parallel
and infinite plates that are described by the Drude model. For
this geometry the large distance expansion applies to d
�c /�. The leading term of this expansion is identical to the
prefect reflector result, as for the plasma model. The dc con-
ductivity appears only in corrections to the leading term that
can be expanded in integer powers of �c /�d. Since the fre-
quently used PFA for the sphere-plate geometry is based on
the two-plate energy, it would predict at sufficiently large d
for both the plasma and the Drude model the perfect reflector
result which has equal contributions from E and M polariza-

tion. However, it is known that the PFA does not apply to
large distances. It should be noted that the result of Eq. �24�
cannot be applied to an arbitrarily large dc conductivity �
since then the term �R5, which comes from the M polariza-
tion of the sphere, diverges. The condition for the validity of
Eq. �24� can be written as d�R, ��, �p, R2 /��. Below we
shall study the validity range of this expansion further by
comparing it to numerical results.

IV. HIGH-TEMPERATURE LIMIT

In this section, we study the high-temperature limit of the
sphere-plate interaction for the plasma and Drude model. In
this case, the interaction is given by the first term of the
Matsubara sum of Eq. �1�. Hence we have to compute the
matrix elements of Y��0=0�. This zero-frequency result will
turn out to be also useful when computing the Casimir en-
ergy at zero and finite temperatures below since the limit �
→0 is numerically unstable due to the divergence of certain
Bessel functions.

A. Plasma model

Here we have to consider the limit �→0 at fixed k	 of the
T matrix of the plate since we are interested in arbitrary
separations d. In this limit the T-matrix elements are given
by

Tp
M = −


k	
 − �4�2/�p
2 + k	

2


k	
 + �4�2/�p
2 + k	

2
, Tp

E = 1. �25�

The elements for the M polarization are nonuniversal and
vary between 1 for �p→0 �perfect reflector� and 0 for �p
→�. The latter limit can be interpreted as a London super-
conductor with diverging penetration depth such that the
plate is transparent to a static magnetic field.

For �p→0 the U matrix of Eq. �6� can be obtained for
�→0 from Eq. �10�. To obtain the U matrix for �→0 at
nonzero but small �p�d, we set k	 =v /d and expand Tp

M of
Eq. �25� in �p /d so that the integral of Eq. �6� can be per-
formed analytically. Since we are interested in the limit �
→0, we only need the conversion matrix elements Dlm

���z� for
large arguments z. At large z the associated Legendre
polynomials Plm�z� assume the limiting form �−i�m�2l
−1� ! !zl / �l−m�!. Using the integral �0

�e−2vvndv=n ! /2n+1 we
obtain to leading order for small � the matrix elements

Ulml�m
EE =� l�2l + 1�l��2l� + 1�

�l + 1��l� + 1�
�2l − 1�!!�2l� − 1�!!�l + l��!

��l + m�!�l − m�!�l� + m�!�l� − m�!
1

�2�d�l+l�+1
, �26a�

Ulml�m
MM = Ulml�m

EE �1 −
l + l� + 1

2�

�p

d
+ O���p/d�2�� . �26b�

The matrix elements Ulml�m
EM , Ulml�m

ME scale for small � as ��d�−l−l� and hence can be ignored. The T-matrix elements of the
sphere for �→0 are given by Eqs. �14� and �15� and hence scale as �2l+1. The low-� scaling of the matrix elements of U and
Ts shows that the elements of the matrix Y scale as Ylml�m

EE �Ylml�m
MM ��l−l� and Ylml�m

EM �Ylml�m
ME ��l−l�+1. Hence for �→0 the
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coupling of E and M polarization does not contribute to the energy. We set again �=u /d and introduce the rescaled matrix Ỹ

with elements Ỹlml�m=u−lYlml�mul� so that divergences for u→0 are removed and in that limit all elements of ỸMM and ỸEE

assume nonzero finite values that depend on R /d and �p /d, and all elements of ỸME and ỸEM vanish. The rescaling does not

change the determinant of Eq. �1� so that det Y =det Ỹ. In the high-temperature limit the energy can then be written as

E =
kBT

2
log det�1 − ỸMM�u → 0� 0

0 1 − ỸEE�u → 0�
� , �27�

where the matrix elements of Ỹ are given by Eqs. �3�, �14�, �15�, and �26�. By truncating the matrix Ỹ at lowest order l=1 we
get the high-temperature free energy

E = − kBT�3

8
+

3

32�2

�p
2

R2 −
3

16�

�p

R
coth�2�

R

�p
��R3

d3 −  3

16�

�p

R
+

9

64�3

�p
3

R3 −
9

32�2

�p
2

R2coth�2�
R

�p
��R4

d4 + O��R/d�5�� ,

�28�

which applies for d�R, �p, �T=�c /kBT. Notice that this energy is not universal in the sense that the leading term depends on
the plasma wavelength. For �p�R, the amplitude of the leading term becomes −3 /8, in agreement with the high-temperature
result for perfect reflectors.17 For �p�R, the amplitude of the leading term approaches −1 /4 which is identical to the result for
the Drude model �see Eq. �27� below�. The behavior in these two limits is consistent with the corresponding limits of the
zero-temperature result of Eq. �19�.

B. Drude model

For this model, the T matrix of the plane for �→0 at fixed k	 behaves differently from Eq. �21�. While Tp
E→1, the magnetic

part vanishes, Tp
M→0. Equation �6� shows that to leading order for small �, the matrix elements Ulml�m

EE are given by Eq. �26�.
In fact, we do not need to find the other matrix elements of U: the elements coupling unlike polarizations are reduced by a
factor �, and the elements Ulml�m

MM are multiplied by Ts,lm
M of the sphere, which scales as �2l+2 for small values of �, and are thus

smaller by a factor � also. The �universal� elements of Ts,lm
E for small � are given by Eq. �14�. This shows that only the E

polarization contributes to the energy at high temperatures and from Eqs. �14� and �26� follows the explicit result for the

elements of the rescaled matrix ỸEE,

lim
u→0

Ỹlml�m
EE �u� =

l + 1

l

1

2l+l�+1
� l�2l + 1�l��2l� + 1�

�l + 1��l� + 1�
�2l� − 1�!!�l + l��!

�2l + 1�!!
�R/d�2l+1

��l + m�!�l − m�!�l� + m�!�l� − m�!
. �29�

In the high-temperature limit the energy is then given by

E =
kBT

2
log det�1 − ỸEE�u → 0�� . �30�

Notice that this result is universal at all separations since the

matrix Ỹ depends only on R /d. The absence of magnetic
contributions is in agreement with the high-temperature in-
teraction between two parallel plates that are described by

the Drude model. A truncation of the matrix Ỹ at l=2 and
expansion of Eq. �30� for small R /d yields the large distance
result

E = − kBT1

4
�R

d
�3

+
1

4
�R

d
�5

+
3

128
�R

d
�6

+ O�R7

d7 ��
�31�

which applies when d�R, �T.

V. NUMERICS

In this section, we evaluate the Casimir energy based on
Eq. �2� for zero temperature and Eq. �1� for finite tempera-
tures. Our results are obtained by numerical computation of
the determinant, the integral over � �or sum over n� and the
integral over z of Eq. �6�. The matrix Y is truncated at a finite
partial wave order, �max. We chose �max such that the result
for the energy changes by less than a factor of 1.0001 upon
increasing �max by 10. The required value of �max depends on
the separation between the plate and sphere. As the separa-
tion decreases, �max increases. For example, for R /d�0.75,
we used �max=24, whereas for R /d=0.8 and 0.85, one needs
�max=34 and for R /d=0.9 the value �max=54.

The numerical computation of the determinant, the inte-
grals and sum poses no principle problem. However, it is
important to consider the determinant of Eq. �1� and �2� care-
fully for �→0. In Sec. IV we have already seen that the
matrix elements Ylml�m for small � scale as �l−l� or �l−l�+1.
This shows that for small � the matrix elements with l� l�
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become extremely small whereas those with l� l� increase
rapidly. For large values of lmax this behavior makes the com-
putation of the determinant at �=0 numerically ill condi-
tioned. However, the analytical results presented in Sec. IV
allow us to calculate the n=0 term in Eq. �1� or the integrand
of Eq. �2� at �=0 for �max=100 and even larger. In fact, as
the value of R /d is increased beyond 0.9, larger values
�max�60 must be used in order to accurately calculate the
energy. For sufficiently high temperatures, the second Mat-
subara wave vector �1=2�kBT /�c in Eq. �1� becomes suffi-
ciently large and hence poses no numerical problem for the
computation of the energy. For example, for T=300 K the
Casimir energy can be calculated for R /d=0.95 with �max
=72. As �max increases, the interval in the vicinity of �=0 in
which the integrand cannot be obtained with sufficient pre-
cision numerically increases too. Due to this behavior, we
restrict the calculation of the Casimir energy at T=0 to
R /d�0.9.

A. Casimir interaction at T=0

In this section, we calculate the Casimir energies for the
usual Drude and plasma model given in Eqs. �13� and �21�,
respectively, for parameters of gold as given below. There
are three dimensionless parameters which we choose as d /R,
�p /R, and �p /��. The first two parameters can be controlled
for a given material by changing the separation d and the
radius R of the sphere. In order to avoid strong finite size
effects in the electronic response, we assume that ��, �p
�R.

In Secs. III B and III C, using �max=2 partial waves, we
obtained an asymptotic expansion of the Casimir energy for
both plasma and Drude model at large separations, see Eqs.
�19� and �24�. In Fig. 1, we compare the analytical results to
the exact numerical results that were obtained as described
before. The graph shows the exact energies for the Drude and
the plasma model normalized to the exact energies for per-
fect reflecting surfaces, taken from Ref. 15. For the plasma
model we used �p /R=0.05 and 0.5, respectively, and for the
Drude model the same two values for �p /R and we set
�p /��=27.4, corresponding to gold for which �p=137 nm
and ���5 nm. The figure illustrates the material depen-
dence of the Casimir energies. For large separations, the ra-
tios for the plasma model approach values slightly smaller
than one, which is consistent with the �p /R-dependent
asymptotic form predicted by Eq. �19�. For the case of the
Drude model, the ratio tends to the universal number 2/3 at
large separations, as predicted by Eqs. �12� and �24�. In the
case of the plasma model, the asymptotic result describes the
energy up to R /d�0.4 nicely. For the Drude model, how-
ever, the agreement between the analytical and numerical
findings is limited to extremely small R /d�10−4. This ex-
ample clearly indicates distinct correlations between material
and geometry. The large deviation of the analytical results
from the numerical data at intermediate distances shows that
for the Drude model a larger number of partial waves than
for the plasma model is necessary to accurately calculate the
Casimir energy.

We also compare the exact numerical results with the Ca-
simir energy obtained by the PFA for both the plasma and the

Drude model. The PFA energy is obtained by integrating the
PFA force F=2�REplates�d−R� with respect to d, where
Eplates�d−R� is the energy of two parallel plates at distance
d−R as given by the Lifshitz formula23 with the correspond-
ing dielectric function. Figure 2 shows the exact Casimir
energy calculated numerically for the plasma model with
plasma wavelength �p /R=0.05 and �p /R=0.5, respectively.
The figure shows also the PFA energy for the same values of
�p. As expected, the discrepancy between the exact and PFA
energy decreases as R /d increases and is expected to vanish
for d→R. This is clearly visible from Fig. 3 which shows the
relative corrections to the PFA energy at short separations.
Interestingly, the dependence of the corrections on �p is not
fully described by the Lifshitz theory since the data for dif-
ferent �p do not collapse onto a single curve. This demon-
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FIG. 1. �Color online� E /Eperf. refl. against R /d for the plasma
model for �p /R=0.5,0.05 �open circles and filled squares, respec-
tively�, and the Drude model for the same values of �p /R �filled
circles and open squares, respectively� and �p /��=27.4, corre-
sponding to gold. The solid and dashed lines represent the
asymptotic results of Eqs. �19� and �24� for the plasma and the
Drude model, respectively. Inset: magnification of the short distance
range.
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FIG. 2. �Color online� Numerical result for −Ed /�c against R /d
for the plasma model at �p /R=0.05 �squares� and at �p /R=0.5
�circles�. The lines represent the PFA energy at �p /R=0.05 �dashed�
and at �p /R=0.5 �solid�.
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strates correlations between geometry and material properties
that are not described by the PFA.16 For example, for �p /R
=0.5 and �p /R=0.05 we find at the shortest studied separa-
tion of d−R=0.11R the exact energy to be 85% and 87% of
the PFA energy, respectively. For perfect reflectors the reduc-
tion was found to be �87% at the same distance.15 We find
similar results using the Drude model. The energies associ-
ated with the Drude model are not shown here since they
collapse onto the data for the plasma model at short separa-
tions.

B. Casimir interaction at TÅ0

The Casimir free energy at finite temperatures T depends
on the thermal wavelength �T=�c /kBT. This additional
length scale introduces an additional dimensionless param-
eter �T /R. To investigate the influence of temperature, we
calculated the Casimir free energy at two different values of
this parameter. We have chosen the values �T /R=1.52,5.94
since they correspond, e.g., to a sphere of radius R=5 �m,
which is small but still relevant to experiments. The tempera-
ture is chosen as T=300 K and T=77 K, yielding �T
=7.6 �m and �T=29.7 �m, respectively. These two tem-
peratures, corresponding to room temperature and the boiling
point of molecular nitrogen N2, respectively, can readily be
accessed in experiments.

Below, we employ more detailed models for the material
response to calculate the Casimir energies at higher tempera-
tures. More specifically, we consider generalized plasma and
Drude models, which take into account the interband transi-
tions of core electrons that are described by a set of oscilla-
tors with nonzero resonant frequencies. The generalized
plasma model has the dielectric permittivity

�p�ic�� = 1 + � 2�

�p�
�2

+ �c�ic�� �32�

and the generalized Drude is described by

�p�ic�� = 1 +
�2��2

��p��2 + �c�/�
+ �c�ic�� �33�

with

�c�ic�� = �
j=1

K
f j

� j
2 + �c��2 + gjc�

�34�

and we set again ��ic��=1. Here K is the number of oscil-
lators, f j are the oscillator strengths, gj are the relaxation
frequency, and � j�0 are the resonant frequencies of the core
electrons. Typical parameters for gold are given by �p
=9 eV for the plasma frequency and �=35 meV for the
relaxation rate.16 These parameters correspond to the length
scales �p=2�c /�p=137 nm and ��=2�c /�=35.4 �m. For
these parameters, the dc conductivity �=�p

2 / �4��� is 184.2
eV, corresponding to the length scale ��=2�c /�=6.7 nm.
Note that electron scattering is not described by the usual
plasma model. However, as can be seen from Eq. �32�, dis-
sipation is included in the generalized plasma model due to
the interband transition of core electrons. To calculate the
Casimir energy, we use the oscillator parameters of gold
which are presented in Table I. These parameters have been
calculated5 based on the six-oscillator model fitted to the
tabulated optical data given in Ref. 24.

We first calculated the n=0 term of the sum of Eq. �1�
analytically, based on the expressions given in Sec. IV and
then calculate the other terms numerically as explained pre-
viously. This allows us to calculate the Casimir free energy
for very short separations. As explained above, large values
of �max should be used at short separations but in this limit
the numerical evaluation of the determinant in Eq. �1� is
cumbersome. This problem disappears as the temperature in
increased because then the second Matsubara wave vector �1
becomes larger and thus no calculation for too small values
of ��0 will be necessary. For the purpose of this paper, we
calculate the relevant energies for distances as short as R /d
=0.95 at the two different temperatures using the generalized
form of the Drude and the plasma model, see Eqs. �32� and
�33�.

Figure 4 shows the ratio of the Casimir free energy to the
energy at T=0 for the generalized plasma model and for the
generalized Drude model at T=300 K and T=77 K. While
the Casimir free energy at T=300 K is always larger than at
T=77 K for the plasma model, we find that for the Drude
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FIG. 3. �Color online� Ratio of the numerical results for the
Casimir energy shown in Fig. 2 and the PFA energy based on the
Lifshitz theory for the plasma model with �p /R=0.05 �squares� and
�p /R=0.5 �circles�. The ratio is shown as a function of the surface-
to-surface distance d−R.

TABLE I. Oscillator parameters for gold. Calculated in Ref. 5
by fitting six oscillators to tabulated optical data �Ref. 24�.

j
� j

�eV�
gj

�eV�
f j

�eV2�

1 3.05 0.75 7.091

2 4.15 1.85 41.46

3 5.4 1.0 2.700

4 8.5 7.0 154.7

5 13.5 6.0 44.55

6 21.5 9.0 309.6
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model the Casimir free energies at T=77 K and T=300 K
cross each other around R /d=0.7. For R /d�0.7, the Casimir
free energy corresponding to T=77 K becomes larger than
the one for T=300 K. For the sphere plate geometry, indica-
tions of negative entropy have recently been reported.17 The
ratio shown in Fig. 4 can be expressed as E�T� /E�0�=1
−TS /E�0�, where S is the entropy associated with the Ca-
simir free energy E�T�. Hence, a ratio E�T� /E�0��1 implies
a negative entropy since E�0��0. Our results clearly show
that for the Drude model the entropy indeed becomes nega-
tive for sufficiently small separations. However, for the
plasma model our results of Fig. 4 indicate a positive en-
tropy.

Above we showed that at large separations the ratio of the
Casimir energy for the plasma and the Drude model varies
between 3/2 �for small �p /R� and 1 �for large �p /R� for zero
and finite temperatures. At shorter separations the ratio is
expected to tend to one since at high frequencies the plasma
and Drude model become identical. It is interesting to ob-
serve how the ratio tends to one with decreasing separation
as a function of temperature. Figure 5 shows the Casimir free
energy for the plasma model divided by that for the Drude
model at T=300 K, T=77 K, and T=0 K. Since �p /R
=0.0274 is small compared to one, the ratio tends to almost
3/2 at large separations. As shown in the figure, with decreas-

ing separation the ratio drops toward one very fast for T=0.
However, for T=300 K the ratio is larger than 3/2 for R /d
�0.7, goes through a maximum around R /d=0.6, and finally
starts dropping to one. The curve for T=77 K also displays a
slight maximum close to R /d=0.15. A similar behavior with
an extrema has been observed also in Ref. 17 for a suffi-
ciently large sphere at T=300 K. The maxima occur at a
distance that approximately corresponds to the thermal
wavelength �T with R /�T=0.66 and R /�T=0.17 for T
=300 K and T=77 K, respectively. Since thermal photons of
wavelength �T mostly contribute to the energy at a separation
d��T, the position of the maxima suggests that thermal ef-
fects less strongly enhance the Drude energy than the plasma
energy, presumably due to dissipation.

VI. CONCLUSION

We have shown in detail how the scattering approach for
Casimir interactions can be applied to study correlations be-
tween effects due to geometry, material properties, and finite
temperature. The experimentally most relevant geometry of a
sphere and plate reveals interesting properties of the Casimir
interaction that are absent for parallel plates and hence in the
proximity force approximation. These findings demonstrate
an interplay between material properties and the finite size of
the sphere. Our main results are as follows. At large separa-
tions we observe both at zero and finite temperatures for the
amplitude of the leading term of the energy different results
for perfect reflectors, Drude, and plasma metals. The plasma
model yields a nonuniversal amplitude that depends on the
ratio of plasma wavelength to sphere radius. For the perfect
reflector and Drude model the amplitudes are universal but
for the latter it is reduced by a factor of 2/3. This result is
distinct from the interaction of two parallel plates, which at
zero temperature is asymptotically identical for the three ma-
terial descriptions. The identification of the plasma wave-
length with the penetration depth of a London supercon-
ductor explains why the plasma model yields the asymptotic
interaction for perfect reflectors and a Drude metals as lim-
iting cases.

Our numerical computations of the energy at smaller
separations demonstrate further important differences be-
tween the plasma and Drude model and generalizations
thereof. We observe full agreement of the numerical results
with the asymptotic expansion at large separations that, how-
ever, is limited for the Drude model to extremely large dis-
tances. Hence, we conclude that for the Drude model higher-
order multipoles are more important than for the plasma
model. At small separations the observed dependence of the
difference between the exact and the PFA energies on the
plasma wavelength demonstrates that geometry and material
effects are correlated. Our results at finite temperatures show
that the Casimir energy for Drude metals changes nonmono-
tonically with temperature, leading to a larger energy at T
=77 K than at T=300 K at sufficiently small separations. We
observe a negative entropy associated with the Casimir free
energy for the Drude model over a range of distances. This
range increases when the temperature is decreased. Both
nonmonotonic temperature dependence and negative entropy
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FIG. 4. �Color online� Ratio of the Casimir free energy to the
energy at T=0 against R /d for the generalized Drude model �open
symbols� and the generalized plasma model �filled symbols� at T
=300 K �squares� and at T=77 K �circles� for a sphere of radius
R=5 �m.
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FIG. 5. �Color online� The ratio of Casimir free energies for the
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are not observed for the plasma model in the range of studied
parameters. At finite temperatures, we find that the Casimir
free energy for plasma metals is approximately 3/2 times the
energy for Drude metals for separations d��T.
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